
CS 4530: Fundamentals of Software Engineering
Lesson 2.3 The Interaction Scale

Jonathan Bell, Adeel Bhutta, Ferdinand Vesely, Mitch Wand
Khoury College of Computer Sciences

1

© 2022 Released under the CC BY-SA license

https://creativecommons.org/licenses/by-sa/4.0/

Learning Goals for this Lesson
• By the end of this lesson, you should be able to

• Give 4 examples of interaction patterns and describe
their distinguishing characteristics

• Draw a picture or give an example to illustrate each one

2

The Interaction Scale: Examples
1. The Pull pattern
2. The Push pattern (*The Observer Pattern)
3. *The Factory Pattern
4. *The Singleton Pattern (the lying factory)

3

*These are “official Design
Patterns” that you will see in
Design Patterns Books

Information Transfer: Push vs Pull

4

class Producer {
theData : number

}

class Consumer {
neededData: number
doSomeWork () {

doSomething(this.neededData)
}

}

• How can we get a
piece of data from
the producer to
the consumer?

Pattern 1: consumer asks producer ("pull")

5

class Producer {
theData : number
getData () {return this.theData}

}

class Consumer {
constructor(private src: Producer) { }
neededData: number
doSomeWork() {

this.neededData = this.src.getData()
doSomething(this.neededData)

}
}

• The consumer
knows about the
producer

• The producer has
a method that the
consumer can call

• The consumer
asks the producer
for the data

Pattern 2: producer tells consumer ("push")

6

class Producer {
constructor(private target : consumer) {}
theData : number
updateData (input) {

// ..something that changes theData..
// notify the consumer about the change:
this.target.notify(this.theData)

}
}

class Consumer {
neededData: number
notify(val: number) { this.neededData = val }
doSomeWork () {

doSomething(this.neededData)
}

}

• Producer knows the
identity of the
consumer

• The Consumer has a
method that
producer can use to
notify it.

• Producer notifies the
consumer whenever
the data is updated

• Probably there will
be more than one
consumer

This is called the Observer Pattern
• Also called "publish-subscribe pattern"
• Also called "listener pattern"
• The object being observed (the "subject") keeps a

list of the objects who need to be notified when
something changes.

• subject = producer = publisher

• When a new object wants to be notified when the
subject changes, it registers with ("subscribes to")
with the subject/producer/publisher

• observer = consumer = subscriber = listener

7

Example: A Clock: AbsClock.ts
• The interface for a

simple clock

8

export default interface AbsClock {

// sets the time to 0
reset():void

// increments the time
tick():void

// returns the current time
getTime():number

}

SimpleClockUsingPull.ts

9

import AbsClock from "./AbsClock";

export class SimpleClock implements AbsClock {
private time = 0
public reset () {this.time = 0}
public tick () { this.time++ }
public getTime(): number { return this.time }

}

export class ClockClient {
constructor (private theclock:AbsClock) {}
getTimeFromClock ():number {

return this.theclock.getTime()
}

}

The Producer

The Consumer

Let's test this: first try

10

// create a clock and test it
const clock1 = new SimpleClock
console.log(clock1.getTime()) // should print (0)
clock1.tick()
clock1.tick()
console.log(clock1.getTime()) // should print (2)
clock1.reset()
console.log(clock1.getTime()) // should print (0)
// now test the client
const client1 = new ClockClient(clock1)
console.log(clock1.getTime()) // should print (0)
console.log(client1.getTimeFromClock()) // should print (0)
clock1.tick()
clock1.tick()
console.log(client1.getTimeFromClock()) // should print (2)

index.ts

Use automated tests instead

11

import { SimpleClock, ClockClient } from "./simpleClockUsingPull";
test("test of SimpleClock", () => {

const clock1 = new SimpleClock
expect(clock1.getTime()).toBe(0)
clock1.tick()
clock1.tick()
expect(clock1.getTime()).toBe(2)
clock1.reset()
expect(clock1.getTime()).toBe(0)

})
test("test of ClockClient", () => {

const clock1 = new SimpleClock
expect(clock1.getTime()).toBe(0)
const client1 = new ClockClient(clock1)
expect(clock1.getTime()).toBe(0)
expect(client1.getTimeFromClock()).toBe(0)
clock1.tick()
clock1.tick()
expect(client1.getTimeFromClock()).toBe(2)

})

SimpleClockWithPull.spec.ts

Pattern 2: producer tells consumer ("push")

12

class Producer {
constructor(private target : consumer) {}
theData : number
updateData (input) {

// ..something that changes theData..
// notify the consumer about the change:
this.target.notify(this.theData)

}
}

class Consumer {
neededData: number
notify(val: number) { this.neededData = val }
doSomeWork () {

doSomething(this.neededData)
}

}

• Producer knows the
identity of the
consumer

• The Consumer has a
method that
producer can use to
notify it.

• Producer notifies the
consumer whenever
the data is updated

• Probably there will
be more than one
consumer

Example: ClockUsingPush

13

export interface AbsObservedClock {
reset():void // resets the time to 0
tick():void // increments the time and

// notifies the consumers
addConsumer(obs:AbsConsumer):void // adds another consumer

// to be notified
}

clockUsingPush.ts

export interface AbsClockConsumer {
// accepts notification that the current time is t
notify(t:number):void

}

The Clock

14

export class ObservedClock implements AbsObservedClock {
private observers: AbsClockConsumer[] = []
public addObserver(obs:AbsConsumer){

this.observers.push(obs)}
private notifyAll() {

this.observers.forEach(obs => obs.notify(this.time))
}

time: number = 0
reset() { this.time = 0 }
tick() { this.time++; this.notifyAll() }

}

A Client

15

export class ObservedClockClient implements AbsClockConsumer {
constructor (private theclock:AbsObservedClock) {

theclock.addObserver(this)
}
private time = 0 // is this the best way to initialize

// the time?
notify (t:number) {this.time = t}
getTime () {return this.time}

}

Tests

16

test("single observer", () => {
const clock1 = new ObservedClock()
const observer1
= new ObservedClockClient(clock1)

expect(observer1.getTime()).toBe(0)
clock1.tick()
clock1.tick()
expect(observer1.getTime()).toBe(2)

})

test("Multiple Observers", () => {
const clock1 = new ObservedClock()
const observer1
= new ObservedClockClient(clock1)

const observer2
= new ObservedClockClient(clock1)

const observer3
= new ObservedClockClient(clock1)

clock1.tick()
clock1.tick()
expect(observer1.getTime()).toBe(2)
expect(observer2.getTime()).toBe(2)
expect(observer3.getTime()).toBe(2)

})

clockUsingPush.spec.ts

The observer gets to decide what to do with
the notification

17

export class DifferentClockClient implements AbsClockConsumer {
constructor (private theclock:AbsObservedClock) {

theclock.addObserver(this)
}
private twicetime = 0 // twice the last time we received
private notifications : number[] = [] // just for fun
notify(t: number) {

this.twicetime = t * 2
this.notifications.push(t)
}

getTime() { return (this.twicetime / 2) }
}

Better test this, too

18

test("test of DifferentClockClient", () => {
const clock1 = new ObservedClock()
const observer1 = new DifferentClockClient(clock1)
expect(observer1.getTime()).toBe(0)
clock1.tick()
expect(observer1.getTime()).toBe(1)
clock1.tick()
expect(observer1.getTime()).toBe(2)

})

Details and Variations
• How does the producer get an initial value?
• How does the consumer get an initial value from

the producer?
• maybe it gets it when it subscribes?
• maybe it should pull it from the producer?

• Should there be an unsubscribe method?

19

Pattern 3: The Factory Pattern
• The situation:

• Your task is to write some code that depends only an
interface, not on a class that implements it.

• But your task requires you to create some objects that satisfy
the interface.

• What to do? You can’t call ‘new’, because that would require
you to know the class name.

• How to organize this?
• Create a Factory whose job it is to create the objects.
• Call the factory when you need a new object.
• Your code will depend only on the interface, because that’s all

you have to work with.
• Often our assignments will be structured in this way.
• This is a little confusing; let's look at an example

20

The Interfaces

21

// from AbsClock.ts, as before...
export default interface AbsClock {

reset():void
tick():void
getTime():number

}

interface AbsClockFactory {
// returns an object satisfying the AbsClock interface
instance() : AbsClock
// returns a string specifying which clock
// this factory makes
clockType : string
// returns the number of clocks created by this factory
numCreated() : number

}

clockFactories.ts

Some Factories...

22

import * as Clocks from './clocks'

class ClockFactory1 implements AbsClockFactory {
clockType = “Larry"
numcreated = 0
public instance() : AbsClock {

this.numcreated++;
return new Clocks.Clock1}

public numCreated() {return this.numcreated}
}

class ClockFactory2 implements AbsClockFactory {
clockType = “Curly"
numcreated = 0
public instance() : AbsClock {

this.numcreated++;
return new Clocks.Clock2}

public numCreated() {return this.numcreated}
}

clockFactories.ts

Choose which factory to export

23

// choose which of the factories to export,
// but don't tell anybody which one it is.

export default ClockFactory1
// export default ClockFactory2
// export default ClockFactory3

clockFactories.ts

TypeScript has a neat way of doing this.

Test to see that the clock factory produces a
working clock

24

import ClockFactory from './clockFactories'

test("test of the Clock produced by the ClockFactory", () => {
const factory1 = new ClockFactory
const clock1 = factory1.instance()
expect(clock1.getTime()).toBe(0)
clock1.tick()
clock1.tick()
expect(clock1.getTime()).toBe(2)
clock1.reset()
expect(clock1.getTime()).toBe(0)

})

Pattern #4: The Singleton Pattern
• Maybe you only want one clock in your system.
• The factory needn't return a fresh clock every time.
• Just have it return the same clock over and over

again.

25

Here’s the behavior we expect

26

import ClockFactory from './singletonClockFactory'

test("actions on clock1 should be visible on clock2", () => {
const clock1 = ClockFactory.instance()
const clock2 = ClockFactory.instance()
expect(clock1.getTime()).toBe(0)
expect(clock2.getTime()).toBe(0)
clock1.tick()
clock1.tick()
expect(clock1.getTime()).toBe(2)
expect(clock2.getTime()).toBe(2)
clock1.reset()
expect(clock1.getTime()).toBe(0)
expect(clock2.getTime()).toBe(0)

})

Solution: Have a factory that always returns
the same clock

27

import AbsClock from './AbsClock’

// use whichever clock factory is exported from clockFactories
import ClockFactory from './clockFactories'

class SingletonClockFactory {
private constructor() {}
private static isInitialized : boolean = false
private static theClock : AbsClock
public static instance () : AbsClock {

if (!(SingletonClockFactory.isInitialized)) {
SingletonClockFactory.theClock = (new ClockFactory).instance()
SingletonClockFactory.isInitialized = true

};
return SingletonClockFactory.theClock

}
}

export default SingletonClockFactory

Describing your design using these
vocabulary words
When I create an object that needs a clock, I get a
copy of the master clock from the clock factory,
and then I have the new object register itself with
the clock.
The master clock updates my object whenever the
master clock changes.
The master clock also sends my object an update
message when it registers, so my object will always
have the latest time.

28

Discussing your design

29

I have a lot of objects, and
they each check the time
very often. If they were
constantly sending
messages to the master
clock, that would be a big
load for it. I sat down with
Pat, who is building the
master clock, and we
agreed on this design.

Why did you choose this
design?

Discussing your design (2)

30

Pat told me that the master
clock is a singleton, so they
will all be getting the same
time.

How do you know that all of
your objects will get the right
time?

The Discussion (3)

31

That's something that
happens in the module that
exports the clock factory.
Pat is building that module.
They say it's not hard, but
they will show me how to
do it in a couple of weeks.

Who is responsible for
keeping the master clock up
to date?

The Discussion (4)

32

The clock factory exports a
class with an interface that
only allows me to register.
The interface doesn’t
provide me with a method
for ticking the clock.

What's to prevent you from
ticking the master clock
yourself?

Learning Goals for this Lesson
• At this point, you should be able to

• Give 4 examples of interaction patterns and describe
their distinguishing characteristics

• Draw a picture or give an example to illustrate each one

33

	CS 4530: Fundamentals of Software Engineering�Lesson 2.3 The Interaction Scale
	Learning Goals for this Lesson
	The Interaction Scale: Examples
	Information Transfer: Push vs Pull
	Pattern 1: consumer asks producer ("pull")
	Pattern 2: producer tells consumer ("push")
	This is called the Observer Pattern
	Example: A Clock: AbsClock.ts
	SimpleClockUsingPull.ts
	Let's test this: first try
	Use automated tests instead
	Pattern 2: producer tells consumer ("push")
	Example: ClockUsingPush
	The Clock
	A Client
	Tests
	The observer gets to decide what to do with the notification
	Better test this, too
	Details and Variations
	Pattern 3: The Factory Pattern
	The Interfaces
	Some Factories...
	Choose which factory to export
	Test to see that the clock factory produces a working clock
	Pattern #4: The Singleton Pattern
	Here’s the behavior we expect
	Solution: Have a factory that always returns the same clock
	Describing your design using these vocabulary words
	Discussing your design
	Discussing your design (2)
	The Discussion (3)
	The Discussion (4)
	Learning Goals for this Lesson

